深度解读TFT-LCD液晶显示技术
来源: 发布时间:2020-09-24 点击量:759
1888年,奥地利植物植物学家莱尼茨尔发现了液晶,它是一个奇怪的有机化合物,分别有两个熔点,把它的固态晶体加热到145℃时,便熔成液体,只不过是浑浊的,而一切纯净物质熔化时却是透明的。如果继续加热到175℃时,它似乎再次熔化,变成清澈透明的液体。后来,德国物理学家莱曼使用他亲自设计,在当时作为最新式的附有加热装置的偏光显微镜对这些脂类化合物进行了观察。他发现,这类白而浑浊的液体外观上虽然属于液体,但却显示出各向异性晶体特有的双折射性。于是莱曼将其命名为“液态晶体”,这就是“液晶”名称的由来。莱尼泽和雷曼后来被誉为液晶之父。液晶自被发现后,人们并不知道它有何用途,直到1968年人们才把它作为电子工业上的的材料。
。LCD能工作的极限温度范围基本上由T1和T2确定。
近晶相液晶分子呈二维有序性,分子排列成层,层内分子长轴相互平行,排列整齐,重心位于同一平面内,其方向可以垂直层面,或与层面成倾斜排列,层的厚度等于分子的长度,各层之间的距离可以变动,分子只能在层内做前后、左右滑动,但不能在上下层之间移动。近晶相液晶的粘度与表面张力都比较大,对外界电、磁、温度等的变化不敏感。
向列相液晶分子只有一维有序,分子长轴互相平行,但不排列成层,它能上下、左右、前后滑动,只在分子长轴方向上保持相互平行或近于平行,分子间短程相互作用微弱,向列相液晶分子的排列和运动比较自由,对外界电、磁场、温度、应力都比较敏感,目前是显示器件的主要材料。
胆甾相液晶是由胆甾醇衍生出来的液晶,分子排列成层,层内分子相互平行,分子长轴平行于层平面,不同层的分子的分子长轴方向稍有变化,相邻两层分子,其长轴彼此有一轻微的扭角(约为15分),多层扭转成螺旋形,旋转360?的层间距离称螺距,螺距大致与可见光波长相当。胆甾相实际上是向列相的一种畸变状态,因为胆甾相层内的分子长轴也是彼此平行取向,仅仅是从这一层到另一层时均一择优取向旋转一个固定角度,层层叠起来,就形成螺旋排列的结构,所以在胆甾相中加消旋向列相液晶或将适当比例的左旋、右旋胆甾相混合,可将胆甾相转变为向列相。一定强度的电场、磁场也可使胆甾相液晶转变为向列相液晶。胆甾相易受外力的影响,特别对温度敏感,温度能引起螺距改变,而它的反射光波长与螺距有关,因此,胆甾相液晶随冷热而改变颜色。
LCD液晶显示屏的基本构造及成像原理
1、背光板:LCD的显像原理是靠液晶阻挡光线的分量达到控制明暗,所以必须要有光源才可能在屏幕上看到图像,所以背光板负责为液晶屏显像提供最基本的光源。
2、下偏光板:背光板送出来的光线方向性不一致,呈放射状,如果这样的光线通过液晶分子的扭转,我们在屏幕上还是看不到正常的图像,看到的可能是白茫茫的一片,或者是花花绿绿的色块,而不会是我们想看到的图像。下面的偏光板承担了将光线的方向规范成一致后再送往液晶层的工作。
3、薄膜基板:液晶分子的扭转角度是由TFT控制。
4、液晶:这层液晶分子在TFT控制下发生扭转,达到将方向一致的光线通亮进行控制,从而在通往后面像素单元的光线明暗度发生了改变。
5、彩色滤光片:如果你有幸关于20世纪80年代记忆的话,相信你会记得当时的黑白电视屏幕前经常会有一片彩色的塑料片片,安装上了这片塑料片后,黑白电视机似乎变成了彩色电视机,我们可以看到某些时候人的脸蛋变粉红了、嘴唇变红了、其他的景物都有了颜色,虽然有时候颜色并不符合实际。其实这片塑料片就是彩色滤色片。